八下机械效率变形公式有以下几种:
η=W有用/W总。变形公式可以表示:W额外=W总-W有用、G=F、S=h。
相关例题:
1. 一个滑轮组经改进后提高了机械效率。与动滑轮等参于滑轮组全过程摩擦力有关的额外功为10J,某同学将重为40N的物体匀速提升2m,改进后滑轮组的机械效率为80%。不计绳重和摩擦,则改进后提升重物的过程中所做的有用功为( )
A. 8J B. 16J C. 32J D. 64J
【分析】
本题考查了机械效率变形公式的应用,是一道基础题,熟练应用机械效率变形公式即可正确解题。
【解答】
由$eta = frac{W_{有用}}{W_{总}}$得:$W_{总} = frac{W_{有用}}{eta} = frac{Gh}{eta} = frac{40N times 2m}{eta} = 80J$,不计绳重和摩擦,则$W_{额外} = W_{总} - W_{有用} = 80J - 40J = 40J$,由$W_{额外} = Fs$可得:$s = frac{W_{额外}}{F} = frac{40J}{G + G_{动}} = frac{40J}{40N + G_{动}}$,改进后滑轮组的机械效率为$80%$,则$G_{动} = 5N$,所以$G = 35N$,所以$W_{有用} = Gh = 35N times 2m = 70J$。故选B。
根据题意,可以变形得到G=F、S=h等其他有用的变形公式。
例题中的公式可以直接使用,不需要再变形。
以上就是八下机械效率变形公式和相关例题的内容,希望对您有所帮助。
机械效率变形公式:
η=W有用/W总。其中,W有用表示人们要达成的是目的后得到的或应该得到的总效果,W总表示这个过程中所有的总功。
η=G物h/Fs。这个公式主要适用于滑轮组,G物h表示物体被提升的高度,Fs表示人拉动绳子的力所做的总功。
例题:
有一滑轮组,它由两个定滑轮和三个动滑轮组成。某人用此滑轮组将一重为G的物体匀速提升h高度,已知作用在绳端的拉力为F,则此滑轮组的机械效率为多少?
解题过程:
机械效率 = G物h / (3F + G动)
其中,G动表示动滑轮的重力。
答案:机械效率 = G物h / (3F + 2G动)
注意:本题答案仅供参考,具体答案可能会因题目中具体要求而有所不同。
八下的机械效率变形公式主要有两个:
1. η=W有用/W总 = Gh/Fs,这个公式可以变形为G/F=h/s。其中,h代表重物上升的高度,s代表绳子上升的高度。
2. η=Q有/Q总 = cmΔt/Q总 = cm(t-t0),这个公式可以变形为t = t0 + (t-t0)ηcm,其中t代表重物在提升到一定高度后物体温度的变化时间,t0则代表物体原来的温度。
相关例题和常见问题包括:
1. 例题:一个重为5N的物体放在水平桌面上,在1N的水平拉力作用下沿桌面匀速直线运动,此时它受到的摩擦力为____N。要减小该物体与桌面间的摩擦,则应____(增大或减小)拉力。
2. 常见问题:在斜面上拉动一个物体时,机械效率与哪些因素有关?如何证明你的观点?
解答:
1. 因为物体在水平拉力作用下匀速运动,所以摩擦力f=F=1N。要减小摩擦,可以通过增大压力或使接触面更粗糙来实现,但拉力必须增大以克服摩擦力。
2. 斜面的机械效率与斜面的倾斜程度有关,倾斜程度越大,机械效率越高。可以通过弹簧测力计拉动同一物体在不同高度下滑,比较弹簧测力计的示数来证明。
以上变形公式和相关例题、常见问题可以帮助我们更好地理解和应用机械效率的相关知识。